Methyl 3,4-Dihydro-1-oxo-2(1H)-naphthylidenehydroxyacetate

BY PHILIPPE PRINCE, FRANK R. FRONCZEK AND RICHARD D. GANDOUR*

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

(Received 22 August 1988; accepted 1 November 1988)

Abstract. $C_{13}H_{12}O_4$, $M_r = 232.2$, monoclinic, $P2_1/c$, a = 8.499 (2), b = 13.798 (4), c = 9.652 (2) Å, $\beta =$ $V = 1120 \cdot 1 (9) \text{ Å}^3$, $D_r =$ $98.25(2)^{\circ}$, Z = 4, 1.377 g cm^{-3} , $\lambda(\text{Cu } K\alpha) = 1.54184 \text{ Å}$, $\mu = 8.12 \text{ cm}^{-1}$, F(000) = 488, T = 295 K, R = 0.042 for 1916 observations (of 2296 unique data). The molecule contains an enol subunit, the hydroxy group of which forms an intramolecular hydrogen bond to the cyclic carbonyl group, with an O···O distance of 2.4782 (14) Å and an O-H...O angle of 143 (3)°. The refined position of the hydrogen atom is 1.16 (4) Å from the hydroxy oxygen and 1.44(4) Å from the carbonyl oxygen, and the isotropic thermal parameter is large: B = 13 (1) Å². The enol C=C bond distance is 1.371 (1) Å and its C-OH distance is 1.312 (1) Å.

Experimental. Pale yellow crystals of (1), m.p. 337 K, were isolated, by two successive recrystallizations in methanol, from the crude reaction product of dimethyl oxalate and 1-tetralone with sodium methoxide in toluene at room temperature (Brown, Touet & Ragault, 1972). Crystal size $0.30 \times 0.35 \times 0.50$ mm, space group from systematic absences h0l with l odd and 0k0 with k odd, cell dimensions from setting angles of 25 reflections having $25 < \theta < 30^{\circ}$. Data collection on Enraf-Nonius CAD-4 diffractometer, Cu Ka radiation, graphite monochromator, $\omega - 2\theta$ scans designed for $I = 25\sigma(I)$, subject to max. scan time = 60 s, scan rates varied 1.27-3.28° min⁻¹. One hemisphere of data having $2 < \theta < 75^{\circ}, -10 \le h \le 10, 0 \le k \le 17, -12 \le 10^{\circ}$ $l \leq 12$ measured. Data corrected for background, Lorentz, polarization, decay and absorption effects. Absorption corrections were based on ψ scans, with a minimum relative transmission coefficient of 87.13%. Standard reflections 423, 060, 002 indicated an 8.4% decay, for which a linear correction was applied. The two octants (4264 measurements) merged, $R_{int} =$ 0.015, to yield 2296 unique data, 1916 observed with $I > 3\sigma(I)$. Structure solved by direct methods, using MULTAN82 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1982), refined by full-matrix least squares based upon F with weights w = $4F_{o}^{2}[\sigma^{2}(I) + (0.02F_{o}^{2})^{2}]^{-1}$ using Enraf-Nonius SDP (Frenz & Okaya, 1980), scattering factors of Cromer

0108-2701/89/040689-02\$03.00

& Waber (1974), anomalous coefficients of Cromer (1974). Non-hydrogen atoms refined anisotropically; hydrogen atoms located by ΔF and refined isotropically. Final R = 0.042, wR = 0.058, S = 2.582for 203 variables. Maximum shift 0.15σ in the final cycle, max. and min. residual density 0.20 and $-0.16 \text{ e} \text{ Å}^{-3}$ respectively, extinction coefficient g = $2.6 (2) \times 10^{-6}$ where the correction factor $(1 + gI_c)^{-1}$ was applied to F_c . Coordinates† are given in Table 1; bond distances, angles, and torsion angles are given in Table 2. The molecule is illustrated in Fig. 1.

[†] Tables of H-atom coordinates, distances and angles involving H atoms, anisotropic thermal parameters and structure-factor amplitudes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51562 (21 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

 Table 1. Coordinates and equivalent isotropic thermal parameters

	x	у	Ζ	$B_{eq}(\dot{A}^2)^*$
O(1)	-0.0044 (1)	0-40046 (8)	0.80170 (9)	4.29 (2)
O (2)	0-1998 (1)	0.4010(1)	0.64240 (9)	5.00 (2)
0(3)	0-4971 (1)	0.40727 (8)	0.6050(1)	4.46 (2)
O(4)	0.5620 (1)	0.30791 (9)	0.7871(1)	5.04 (2)
cùí	0.1026 (2)	0.38634 (9)	0.9048(1)	3.33 (2)
C(2)	0.0575 (2)	0.37556 (9)	1.0455(1)	3.47 (2)
Č(3)	-0.1020 (2)	0.3584 (1)	1.0609 (2)	4.30(3)
Č(4)	-0.1435 (2)	0.3482 (1)	1.1932 (2)	5-29 (3)
Č(5)	-0.0286 (2)	0.3547 (1)	1.3098 (2)	5.27 (3)
C(6)	0.1289 (2)	0.3722 (1)	1-2959 (1)	4.65 (3)
C(7)	0.1731 (2)	0.3833 (1)	1.1636 (1)	3.73 (2)
C(8)	0.3413 (2)	0.4072 (1)	1.1433 (1)	4.56 (3)
C(9)	0.3881 (2)	0-3575 (1)	1.0150(1)	4.42 (3)
C(10)	0.2680 (2)	0.3771 (1)	0.8863 (1)	3.30(2)
C(11)	0.3044 (2)	0.3818(1)	0.7527(1)	3.50 (2)
C(12)	0.4696 (2)	0.3612 (1)	0.7194 (1)	3.60 (2)
cùá	0.6508 (2)	0.3892 (1)	0.5592 (2)	5.08 (3)

* The equivalent isotropic thermal parameter, for atoms refined anisotropically, is defined by the equation: $\frac{4}{3}[a^2\beta_{11} + b^2\beta_{22} + c^2\beta_{33} + ac\beta_{13}\cos\beta]$.

© 1989 International Union of Crystallography

^{*} To whom correspondence should be addressed.

Table	2.	Bond	distances	(A),	angl	les ('	°),	and	selected
			torsion	i ang	les (°	')			

$\begin{array}{cccc} 0(1)-C(1) & 1 \\ 0(2)-C(11) & 1 \\ 0(3)-C(12) & 1 \\ 0(3)-C(13) & 1 \\ 0(4)-C(12) & 1 \\ C(1)-C(2) & 1 \\ C(1)-C(2) & 1 \\ C(2)-C(3) & 1 \\ C(2)-C(3) & 1 \\ C(2)-C(7) & 1 \\ \end{array}$	263 (1) 312 (1) 324 (1) 459 (1) 199 (1) 471 (1) 447 (1) 404 (1) 398 (1)	$\begin{array}{c} C(3)-C(4)\\ C(4)-C(5)\\ C(5)-C(6)\\ C(6)-C(7)\\ C(7)-C(8)\\ C(8)-C(9)\\ C(9)-C(10)\\ C(10)-C(11)\\ C(11)-C(12) \end{array}$	1.38 1.38 1.38 1.39 1.50 1.51 1.51 1.51 1.37	0 (1) 3 (2) 5 (2) 0 (1) 7 (1) 7 (1) 5 (1) 1 (1) 1 (1)
O(2) - H(20) = 1	16 (3)			
$\begin{array}{c} C(12)-O(3)-C(13)\\ O(1)-C(1)-C(2)\\ O(1)-C(1)-C(10)\\ C(2)-C(1)-C(10)\\ C(1)-C(2)-C(3)\\ C(1)-C(2)-C(7)\\ C(3)-C(2)-C(7)\\ C(3)-C(2)-C(7)\\ C(3)-C(4)-C(5)\\ C(4)-C(5)-C(6)\\ C(4)-C(5)-C(6)\\ C(5)-C(6)-C(7)\\ C(2)-C(7)-C(6)\\ C(2)-C(7)-C(8) \end{array}$	116-39 (8) 119-30 (8) 121-21 (8) 119-45 (7) 119-88 (8) 120-18 (8) 120-18 (8) 119-6 (1) 120-1 (1) 120-8 (1) 120-0 (1) 119-29 (9) 118-67 (8)	$\begin{array}{c} C(6)-C(7)-C(6)\\ C(7)-C(8)-C(7)\\ C(8)-C(9)-C(7)\\ C(1)-C(10)-C\\ C(1)-C(10)-C\\ C(9)-C(10)-C\\ O(2)-C(11)-C\\ O(2)-C(11)-C\\ C(10)-C(11)-C\\ C(10)-C(11)-C\\ O(3)-C(12)-C\\ O(4)-C(12)-C\\ O(4)-C(12)-C\\ \end{array}$	3) 10) (9) (11) (11) (10) (12) C(12) (4) (11) (11)	122-00 (9) 111-82 (8) 111-34 (8) 117-81 (8) 117-80 (7) 124-31 (8) 114-04 (7) 122-22 (7) 124-64 (8) 111-61 (7) 123-72 (8)
C(11) - O(2) - H(20)	104 (1)			
$\begin{array}{c} C(13) - O(3) - C(12) - C\\ C(13) - O(3) - C(12) - C\\ O(1) - C(1) - C(2) - C(1) - C(1) - C(2) - C(2) - C(1) - C(1) - C(1) - C(2) - C(1) - C(1) - C(2) - C(1) - C(1) - C(2) - C(2) - C(1) - C(1) - C(2) - C(7) - C(8) - C(9) - C(8) - C(9) - C(8) - C(9) - C(8) -$	$\begin{array}{cccc} 0(4) & 1 \cdot 0 & (2) \\ (11) - 177 \cdot 29 & (12) \\ & - 164 \cdot 59 & (13) \\ 7) & 17 \cdot 6 & (2) \\ 9) & - 178 \cdot 37 & (13) \\ 11) & - 1 \cdot 6 & (2) \\ 9) & - 0 \cdot 6 & (2) \\ 11) & 176 \cdot 15 & (12) \\) & 2 \cdot 74 & (20) \\) & - 38 \cdot 0 & (2) \end{array}$	$\begin{array}{c} C(8)-C(9)-C(10)\\ C(8)-C(9)-C(10)\\ C(1)-C(10)-C(1)\\ C(9)-C(10)-C(1)\\ C(9)-C(10)-C(1)\\ C(9)-C(10)-C(1)\\ O(2)-C(11)-C(1)\\ O(2)-C(11)-C(1)\\ C(10)-C(11)-C(1)\\ C(10)-C(1)-C(1)\\ C(1)-C(1)-C(1)\\ C(10)-C(1)-C(1)\\ C(1)-C(1)-C(1)\\ C(1)-C(1)\\ C(1)-C(1)-C(1)\\ C(1)-C(1)\\ C(1)-C(1)-C(1)\\ C(1)-C(1)-C(1)\\ C(1)-C(1)-C(1$	$\vdash C(1)$ $\vdash C(11)$ I)-O(2) I)-C(12) I)-C(12) I)-C(12) I)-C(12) I)-O(3) I)-O(3) I)-O(4	$\begin{array}{c} -3\overline{4} \cdot 0 (2) \\ 149 \cdot 46 (14) \\ 5 \cdot 1 (2) \\ -178 \cdot 36 (14) \\ 2) -178 \cdot 36 (14) \\ 2) 3 \cdot 95 (21) \\ -28 \cdot 87 (17) \\ -149 \cdot 47 (14) \\ 3) -153 \cdot 24 (13) \\ 1) 28 \cdot 42 (21) \end{array}$
C(7)-C(8)-C(9)-C(1	U) 52·2 (2)			

Related literature: Structure of 2-acetyl-1-tetralone: Geoffroy, Jain, Celalyan & Bernardinelli (1983); structures of several tetracycline derivatives: Stezowski (1976).

Fig. 1. Numbering scheme of title compound; thermal ellipsoids are drawn at the 40% probability level. H atoms are drawn as circles with the same arbitrary radius.

Support for this work is provided by a grant from the National Institutes of Health.

References

- BROWN, E., TOUET, J. & RAGAULT, M. (1972). Bull. Soc. Chim. Fr. pp. 212–220.
- CROMER, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- CROMER, D. T. & WABER, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- FRENZ, B. A. & OKAYA, Y. (1980). Enraf-Nonius Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- GEOFFROY, M., JAIN, A., CELALYAN, A. & BERNARDINELLI, G. (1983). Z. Naturforsch. Teil B, 38, 830–834.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- STEZOWSKI, J. J. (1976). J. Am. Chem. Soc. 98, 6012-6018.

Acta Cryst. (1989). C45, 690-692

Structure of N-tert-Butoxycarbonyl-L-tyrosine 4-Bromophenacyl Ester

BY J. MATSOUKAS, M. SEMERTZIDIS, J. HONDRELIS, V. NASTOPOULOS AND S. VOLIOTIS*

Department of Chemistry, University of Patras, GR-26110 Patras, Greece

AND IVAN LEBAN

Department of Chemistry and Chemical Technology, Edvard Kardelj University, Murnikova 6, PO Box 537, 61001 Ljubljana, Yugoslavia

(Received 12 May 1988; accepted 4 November 1988)

Abstract. $C_{22}H_{24}BrNO_6$, $M_r = 478 \cdot 3$, monoclinic, $P2_1$, a = 5.456 (1), b = 10.158 (1), c = 20.239 (5) Å, $\beta =$

95.83 (2)°, V = 1115.9 (6) Å³, Z = 2, $D_x = 1.423$ g cm⁻³, λ (Mo Ka) = 0.7107 Å, $\mu = 19.89$ cm⁻¹, F(000) = 492, room temperature, R = 0.085 for 962 unique observed reflections. The urethane amide bond

* To whom all correspondence should be addressed.

0108-2701/89/040690-03\$03.00

© 1989 International Union of Crystallography

690